

PASS/EQUIP Overview Webinar

Comprehensive Software for Structural Pressure Vessels Analysis

Leonid Korelstein, Ph.D., VP, Research & Development

Andrey Krasnokutsky, Ph.D., Head of Strength Analysis Department

Webinar Agenda

- · About PASS Suite
- What is PASS/EQUIP
- PASS/EQUIP Configurations
- Supported codes and standards
- PASS/EQUIP Material Database
- · 3D Model Export
- Reports generation
- What's new in PASS/EQUIP 3.02
- Live demonstration of PASS/EQUIP
- · Q & A session

PASS Suite

PASS Suite provides smart simulation & sizing tools for every piping and equipment engineer and designer

Company Overview

- · > 50 years history
- · > 3,000 active users worldwide
- · Best in class modern methods, algorithms and software libraries
- Embedded knowledge and support/training from industry experts
- User-friendly interface and flexible CAD integration
- Affordable price and flexible licensing

Pressure vessel strength and stability analysis for horizontal and vertical vessels, columns, storage tanks, heat exchangers, and finite element analysis of arbitrary vessel nozzles

Pressure Vessel Stress Analysis

- Broad Applicability
- Unsurpassed Usability
- Powerful Capabilities
- Flexible Configurations
- Widely Used

PASS/EQUIP | Broad Applicability

- Power
- Oil Refining
- · Chemical
- Petrochemical
- Natural Gas

- Horizontal and vertical vessels
- Columns
- Heat Exchangers
 - shell-and-tube
 - air-cooled
- Tanks

Configurations

General Data

PASS/EQUIP Features

· Codes:

ASME sec VII div. 1 and div.2, EN 13445, WRC and Russian GOST

- Nozzle-shell connection: The stresses per WRC 537(107)/297 and GOST 34233.3-2017 codes
- Materials and Elements Database:
 ASME, EN, GOST, JB etc., shells, heads, flanges gaskets, saddle supports, supporting legs, cylindrical and conical supports, nozzles, cross-sections of ribs, reinforcing rings, beam elements of support structure
- Input data analysis
 Error and warning messages
- Input of additional weight loads
 Forces and moments
- Thickness calculation
 (Including for external pressure) and calculation of allowable pressure, forces and moments

PASS/EQUIP | Material Database

- Selected from database (ASME II Part D, EN, GOST 34233.1, PNAE G-7-002-86, GOST R 54522-2011 etc.)
- · User-defined materials

PIPING AND EQUIPMENT

- Representation of model structure as a structure tree.
- 3D graphic display: the color of selected elements and the entire model to be customized.
- "Wire-frame" and "transparent" view which allows internal elements to be seen.

Features

Automatic calculation of:

- weight
- length
- reinforcing ring
 properties
 (in both cylindrical
 shells and saddle
 supports)
- liquid volume, fill height, filling ratio and hydrostatic pressure

Features

PASS/EQUIP Features

- Dependency between elements when one element changes, other linked elements change automatically
- Precise 3D solid model representation
- Units selection (US, SI, MKS)
- Analysis of horizontal vessel shells with any number (more than 2) and position of saddle supports
- Output of diagrams for deformation, bending moments, transverse forces and strength and stability allowances
- Export of the model to popular solid modelling formats, i.e. ACIS, IGES, Parasolid, STEP

3D Model Export

Export to AutoCAD and other popular CAD systems and finite element analysis software via formats IGES, STEP, ACIS, ParaSolid

PASS/EQUIP Features

- Analysis of bolted caps
 (with flange joints) as a combined analysis of flange and heads
- Calculation of low-cycle fatigue of vessel elements
- Strength analysis of shells and heads considering displacement of weld joint edges, angularity and out-of-roundness of the shells
- Full (with intermediate analysis results) or Short reports of analysis
- Export of nozzles to PASS/EQUIP Nozzle FEM files (*.nzl)

PASS/EQUIP | Report

FLAT COVER WITH HOLES

Nozzle name	Chord, di, mm	
Nozzle 1	80.3	
Nozzle №2	36.34	
Nozzle №3	35.45	
	Nozzie 1 Nozzie №2	

Reduction factor for bottoms with holes (number of holes: 3):

$$K_0 = \sqrt{\frac{1 - \left(\frac{\sum d_i}{D_p}\right)^3}{1 - \left(\frac{\sum d_i}{D_p}\right)}} = 1.274$$

Position of the most hazardous section: Angle of the most hazardous section, \$\sigma\$: 5 °

- Lowest vibration frequency.
- Forces under wind loads (including resonance vortex excitation) and seismic loads.
- Strength and stability analysis of column elements.

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

Columns

- Analysis of "cylinder + cone" support skirt with the option of including a transitional shell.
- Automatic determination of position and properties of most unsafe crosssection of supporting shell.
- Calculation of loads on basement and support structure.

Columns

Columns

Parameters of hazardous section

Section coordinate (from the lower point of base): x = 768.6 mmDiameter in the critical cross-section: $D_2 = 2600 \text{ mm}$

Automatic Determination of Loads, Plotting

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

Columns

PASS/EQUIP | Heat Exchangers

- ASME UHX and GOST 34233.7 heat exchanger mechanical design;
- Input of heat-exchange element properties within a single multi-window interface;
- · Calculation of forces in tube plates, casing and tubes;
- Analysis of tube plates, casing, tubes, expansion joint, expansion vessel, floating head;
- Air cooling exchanger.

Heat Exchanger

Automatic determination of tube sheet design parameters

- Automatic weight measurement.
- Strength and stability
 analysis of the wall,
 stationary frameless roof
 and tank head, including
 wind, snow and seismic
 loads.
- Wall anchorage calculation.
- Calculation of loads on basement.
- Estimation of allowable stresses on the nozzles of cut-ins in the tank wall.

Tanks

Area of allowable nozzle loads

Tank

PASS/EQUIP Seismic

- Calculation of seismic loads on horizontal and vertical vessels.
- Analysis of vessel elements considering seismic loads.
- Consideration of support structure and installation height.

PASS/EQUIP | Reports

Passat report

Problem components

General data

Summary tables Summary tables Nordes numery Elling calculation

quipment cathegory as per TR TS 032/2013

Strength from supporting loads: Drawings of forces and economis Saddle Support No.2 Saddle Support Nel

Calculation of seismic effects

Head elliptical Nel Catindacal Shell 2

Флинцевое соединения Дуб)

Фианциров сооримения Ду25

Филиппре соещинии Ду50

Flange Ty-100

Flange Jlv300

Cylindrical Shel 3

Flange Dy 1600 Head elliptical No.

Cylindrical Shell 1

Summary tables

Basic components

Input data

Component	Material	Diameter, mm	Wall thickness, mm	Length (height), num	Total allowance, mm	Weld strength ratio
Head elliptical Nel	09Г2C	4000	60	1140	15	1
Cylindrical Shell 2	09Γ2C	4000	50	4940	6	1
Cylindrical Shel 3	09F2C	4000	65	2600	6	1
Cylindrical Shel No4	20	1600	26	1043	6	1
Head elliptical Ne3	09F2C KI1245	1600	30	490	10	1
Cylindrical Shell 1	09F2C	4000	50	8540	6	1
Cap flat No.1	09F2C	600	60	218	6	1
Head elliptical No.2	09F2C	4000	60	1140	15.3	1

Calculation results

Operating conditions

Component	Calculation temperature, °C	Calculation pressure, MPa	Allowable stresses, MPn	Effective thickness including allowances, mm	Allowable pressure, MPa	Strength condition
Head elliptical No.1	100	3.412	160	57.87	3.58	fulfilled
Cylindrical Shell 2	100	3.412	160	49.1	3.482	fulfilled
Cylindrical Shel 3	100	3.412	160	49.1	4.651	fulfilled
Cylindrical Shel Net	100	3.428	142	25.55	3.506	fulfilled
Head elliptical №3	100	3.433	140	29.74	3.478	fulfilled
Cylindrical Shell 1	100	3.412	160	49.1	3.482	fulfilled
Cap flat No.1	100	3.4	160	50	5.121	fulfilled
Head elliptical No.2	100	3.412	160	58.17	3.556	fulfilled

Test conditions

Component	Calculation pressure, MPa	Allowable stresses, MPa	Effective thickness including allowances, mm	Allowable pressure, MPa	Strength condition
Head elliptical Nel	4.444	254.5	50.07	5.695	fulfilled
Cylindrical Shell 2	4.444	254.5	41.22	5.539	fulfilled
Cylindrical Shel 3	4.444	254.5	41.22	7.4	fidfilled
Cylindrical Shel Ne4	4.46	200	24.04	4.938	falfilled
Head eliptical Ne3	4.465	222.7	26.12	5.534	fulfilled
Cylindrical Shell 1	4.444	254.5	41.22	5.539	fulfilled

Calculation of wind loads

Calculation as per GOST 34283-2017

Normative value of the average wind load on the i-th section:

 $q_{1st} = q_0 \cdot \theta_s \cdot K_s$

where θ_i - coefficient taking into account the dependence of the wind pressure of the vessel height:

$$\Theta_{L} = \begin{cases} 0.75, (x_{j} + x_{oox}) \le 5 \text{ m} \\ \left(\frac{x_{j} + x_{oox}}{10}\right)^{0.3}, (x_{j} + x_{oox}) > 5 \text{ m} \end{cases}$$

Average share of wind load on the i-th section

where Di - outer diameter of the i-th section,

hi - height of the i-th section.

The coefficient of the spatial correlation of the wind pressure fluctuations:

$$v = 0.968 - 0.025 \sqrt{H + z_{obs}}$$

Fluctuating component of the wind load on the i-th section:

$$P_{iom} = v \cdot G_i \cdot \xi \cdot \eta_i$$

where Gi - weight of the i-th section,

₹ – dynamic factor.

ηi - relative acceleration of the center of gravity of the i-th section.

Wind load on the i-th section:

$$P_i = P_{int} + P_{intro}$$

The bending moment in the cross-section at the height xo, caused by wind load on the j-th serving platform:

$$M_{ej} = 1.4 \cdot q_0 \cdot \theta_1 \cdot (x_1 - x_0) \cdot (x_0 - x_0) \cdot ($$

In the absence of accurate data about the shape of platform the bending moment is given by:

$$M_{\pi_1} = 1.85 \ q_0 \ \theta_1 \ (x_1 - x_0) \ (1 + 0.75 \ \xi \ x_1 \ m_1) \ A_1$$

where ΣA_n - sum of the areas of all projections profiles of j-th platform in a plane perpendicular to the wind direction;

$$\chi = 1.56 \left(\frac{x_j + x_{\text{max}}}{H + x_{\text{max}}} \right)^{1.6}$$

m; - pulsation factor of the wind pressure.

$$m_j = 0.76 \cdot \left(\frac{x_j + x_{+cm}}{10} \right)^{-0.5}$$

H = 3379 mm - total vessel height from the ground

Calculation bending moment in the cross section at a height xo:

$$M_{\star} = \sum_{i}^{n} P_{i} \cdot (x_{i} - x_{0}) + \sum_{i}^{n} M_{\star i}$$

PASS/EQUIP | Examples

PASS/EQUIP | Examples (Heat Exchangers)

PASS/EQUIP | Examples

PASS/EQUIP | Examples

Example (Columns)

Industries:

- Oil refining
- Chemical
- Petrochemical
- Oil and Gas
- Thermal power
- and others

WW Users

PASS/EQUIP | Russian Users

- The ability to calculate the model simultaneously for several loading cases
- Calculation of the minimum material applicability temperature (MDMT)
 in accordance with ASME VIII-1
- Calculation of seismic loads according to EN-1998, wind loads according to EN 19914
- Calculation of the Ring support of a vertical vessel according to EN 13445-3
- Saddle support with full coverage
- Calculation of support skirts according to ASME VIII-1, ASME VIII-2, EN 13445-3
- Calculation of the skirt basering according to Bednar, D. Moss, EN-13445-3

Two supports together

PIPING AND EQUIPMENT ANALYSIS & SIZING SUITE

The ability to calculate the model simultaneously for several loading cases

Calculation of seismic loads according to EN-1998, wind loads according to EN 19914

Calculation of
Ring support of
a vertical vessel
according to
EN 13445-3

Saddle support with full coverage

Calculation of support skirts according to ASME VIII-1, ASME VIII-2, EN 13445-3

Calculation of the skirt basering according to Bednar, D. Moss, EN-13445-3

PASS/EQUIP | Development Plan for 2020

- Calculation of vessels and Heat Exchangers by ASME VIII Div.2 Code
- Other national seismic and wind load codes
- Full integration "PASS/EQUIP" with "PASS/Nozzle-FEM"
- API 650 for Tanks
- Calculation of the strength and stability of the frame tank roof using FEM
- Other customer wishes:

we are open for your suggestions!

Q & A

P: +7 495 225 94 32

E: sales@passuite.com

E: support@passuite.com

W: www.passuite.com

Get a Free 30-days PASS Trial License: demo.passuite.com

Watch recording of the webinar: www.youtube.com/passuite

